

Distributed by:

ADVANCED APPLIED TECHNOLOGIES **Contact Us:** Irl Ph: 01 4523432 UK Ph: 08452 30 40 30 Web: www.carlstuart.com Email: info@carlstuart.com Laboratory conductivity meter

Accuracy when going to press	The use of advanced technology and the high quality standard of our instruments are the result of continuous development. This may result in differences between this operating manual and your instrument. We cannot guarantee that there are absolutely no errors in this manual. We are sure you will understand that we cannot accept any legal claims resulting from the data, figures or descriptions.
Warranty declaration	The designated instrument is covered by a warranty of three years from the date of purchase. The instrument warranty extends to manufacturing faults that are determined within the period of warranty. The warranty excludes components that are replaced during maintenance such as batteries, etc.
	The warranty claim extends to restoring the instrument to readiness for use but not, however, to any further claim for damages. Improper handling or unauthorized opening of the instrument invalidates any warranty claim.
	To ascertain the warranty liability, return the instrument and proof of purchase together with the date of purchase freight paid or prepaid.

Copyright © Weilheim 2004, WTW GmbH Reprinting - even as excerpts - is only allowed with the explicit written authorization of WTW GmbH, Weilheim. Printed in Germany.

1	Ove	erview
	1.1	Keyboard6
	1.2	Display
	1.3	Sockets
2	Saf	ety9
	2.1	Authorized use 10
	2.2	General safety instructions
3	Cor	mmissioning13
	3.1	Scope of delivery 13
	3.2	Initial commissioning 13
4	Оре	eration
	4.1	Switch on the instrument 17
	4.2	Measuring 19
		4.2.1 Conductivity / Specific resistance 21
		4.2.2 Salinity
		4.2.3 TDS (total dissolved solids)
	1 2	4.2.4 Printing/transmitting measured values . 24
	4.3	A 3.1 Determining the cell constant
		(calibrating) 25
		4.3.2 Setting the cell constant manually 29
	4.4	Setting up the temperature compensation TC . 32
	4.5	Storing
		4.5.1 Manual storage 36
		4.5.2 Switching on AutoStore (Int 1) 38
		4.5.3 Outputting the data storage 40
		4.5.4 Clearing the storage 46
	4.6	Data transmission
		4.6.1 Data transmission interval (Int 2) 4/
		4.6.2 Recorder (analog oulput)
		4.6.4 Operation with Multil ab pilot 51
	47	Configuration 52
	4.8	Reset 57
	1.0	

5	Maintenance, cleaning, disposal 59
	5.1 Maintenance 59
	5.1.1 Changing the batteries
	5.1.2 Replacing the roll of printer paper 61
	5.2 Cleaning 62
	5.3 Disposal 62
6	What to do if
7	Technical data 67
8	Lists

1 Overview

The compact inoLab Cond 730 precision conductivity meter lets you perform conductivity measurements rapidly and reliably.

The inoLab Cond 730 provides the highest degree of operating comfort, reliability and measuring safety for all applications.

The integrated printer^{*} enables the measurements to be documented in compliance with GLP.

The proven procedures to determine or set up the cell constant support your work with the conductivity meter.

Note

The measuring instrument can also be delivered as part of a set.

Information on this and other accessories is available in the WTW catalog LABORATORY AND FIELD INSTRUMENTATION or via the Internet.

* only on the Cond 730 with integrated printer

1.1 Keyboard

	Print LED lights up red)
6	Reduce values, scroll
7	Confirm inputs, start AutoRead
8	Increase values, scroll
9	Store measured value
10	Activate/deactivate AutoRead function
11	Measuring instrument ON/OFF
12	Display/transmit measured values

* only on the Cond 730 with integrated printer

1.2 Display

1.3 Sockets

Connectors:

- **1** Conductivity measuring cell
- **2** RS 232 interface/analog output
- 3 Plug-in power supply

Caution

Only connect measuring cells to the instrument that cannot feed excessive voltages or currents (> SELV and > circuit with current limiter). Almost all commercial measuring cells - especially WTW measuring cells - meet these requirements.

2 Safety

This operating manual contains basic instructions that you must follow during the commissioning, operation and maintenance of the instrument. Consequently, all responsible personnel must read this operating manual before working with the instrument.

The operating manual must always be available within the vicinity of the instrument.

Target groupThis measuring instrument was developed for use in the lab-
oratory.
Thus, we assume that, as a result of their professional train-

ing and experience, the operators will know the necessary safety precautions to take when handling chemicals.

Symbols used

Caution

indicates instructions that have to be followed to prevent damage to your instrument.

Warning

indicates instructions that have to be followed to protect yourself and the instrument from dangerous electrical voltage.

Note

Indicates notes that draw your attention to special features.

Note

Indicates cross-references to other documents, e.g. application reports, operating manuals of measuring cells, etc.

2.1 Authorized use

This instrument is authorized exclusively for measuring the conductivity, salinity, temperature and TDS (total dissolved solids) in the laboratory.

The technical specifications as given in the chapter 7 TECHNICAL DATA must be observed. Only the operation and running of the measuring instrument according to the instructions given in this operating manual is authorized. Any other use is considered **unauthorized**.

2.2 General safety instructions

This instrument is constructed and tested in compliance with the EN 61010-1 safety regulations for electronic measuring instruments.

It left the factory in a safe and secure technical condition.

Function and
operational safetyThe smooth functioning and operational safety of the instru-
ment can only be guaranteed if the generally applicable
safety measures and the specific safety instructions in this
operating manual are followed.

The smooth functioning and operational safety of the instrument can only be guaranteed under the climatic conditions specified in the chapter 7 TECHNICAL DATA.

If the instrument was transported from a cold environment to a warm environment, the formation of condensate can lead to the faulty functioning of the instrument. In this event, wait until the temperature of the instrument reaches room temperature before putting the instrument back into operation.

Caution

The instrument is only allowed to be opened by personnel authorized by WTW.

Safe operation	If safe operation is no longer possible, the instrument must be taken out of service and secured against inadvertent operation. Safe operation is no longer possible if:		
	 the instrument has been damaged in transport 		
	 the instrument has been stored under adverse conditions for a lengthy period of time 		
	 the instrument is visibly damaged 		
	 the instrument no longer operates as described in this manual 		
	If you are in doubt contact the supplier of the instrument.		
Obligations of the operator	The operator of this measuring instrument must ensure that the following laws and guidelines are observed when using dangerous substances:		
	 EEC directives for protective labor legislation 		
	 National protective labor legislation 		

- Safety regulations
- Safety datasheets of the chemical manufacturer.

3 Commissioning

3.1 Scope of delivery

- Laboratory measuring instrument, inoLab Cond 730
- Plug-in power supply
- Operating manual and short manual
- 4 x type AA Mignon 1.5 V batteries

3.2 Initial commissioning

Perform the following activities:

- Set the date and time
- Connect the plug-in power supply (for printer functions).

Setting the date	1	Press and hold down the 🔘 key.
and time	2	Press the () key. The <i>display test</i> appears briefly on the display. The measuring instrument then switches automatically to the setting of the baud rate.
	3	Press the 💮 key repeatedly until the date flashes on the display.
	4	Set today's date by pressing $\mathbf{O} \mathbf{\nabla} \mathbf{\emptyset}$
	5	Confirm with . The date (month) flashes on the display.
	6	Set the current month by pressing $\mathbf{O}\mathbf{\nabla}\mathbf{\emptyset}$
	7	Confirm with . The year appears on the display.
	8	Set the current year by pressing $\mathbf{O}\mathbf{\nabla}\mathbf{\emptyset}$
	9	Confirm with . The hour field flashes on the display.
	10	Set the current time by pressing $\mathbf{O} \mathbf{\nabla} \mathbf{\emptyset}$
	11	Confirm with . The minutes field flashes on the display.

- 12 Set the current time by pressing $\bigcirc \heartsuit \varnothing$
- 13 Confirm with (B). The measuring instrument then switches to the measuring mode.
- 14 Switch off the instrument by pressing (b).

Connecting the plug-in power supply

The measuring instrument works battery-powered. It can, however, also be supplied by the plug-in power supply which is available as an accessory.

Warning

The line voltage on site must lie within the input voltage range of the original plug-in power supply unit (see chapter 7 TECHNICAL DATA).

Caution

Use original plug-in power supplies only (see chapter 7 TECHNICAL DATA).

1 Insert the plug (1) into the socket (2) of the conductivity meter.

2 Connect the original WTW plug-in power supply (3) to an easily accessible mains socket.

Note

You can also perform measurements without a plug-in power supply. However, the functions of the integrated printer can only be used with connected plug-in power supply.

4 **Operation**

4.1 Switch on the instrument

1	Place the instrument on a flat surface and protect it against intense light and heat.
2	Connect the conductivity measuring cell to the instrument.
3	Press the () key. The <i>display test</i> appears briefly on the display. The instrument then switches automatically to the previously selected measuring mode.
4	Check or determine the cell constant [C]. The procedure is described in section 4.3 on page 25.

Note

The instrument has an energy saving feature to avoid unnecessary battery depletion.

The energy saving feature switches the instrument off if no key has been pressed for an hour.

The energy saving feature is not active:

- if the power is supplied by the plug-in power supply
- if the AutoStore function is active
- if a PC is connected
- if the recorder cable is connected
- if the printer cable is connected (for external printers)

Preparatory activities

	1	Connect the measuring cell to the instrument.
-	2	Adjust the temperature of the test solutions or measure the current temperature if the measurement is made without a temperature probe.
-	3	Calibrate the instrument with the measuring cell or check the cell constant set up.
	Λ	Soloct the massuring mode by prossing

4 Select the measuring mode by pressing igodot.

Caution

4.2

Measuring

When connecting an earthed PC/printer, measurements cannot be performed in earthed media as incorrect values would result.

Perform the following activities when you want to measure:

The RS232 interface is not galvanically isolated.

Temperature probe

Measurements can be performed with and without a temperature probe. A connected temperature probe is indicated by TP on the display.

If you want to use a WTW conductivity measuring cell without a temperature probe, you have to connect it with an adapter (available at WTW).

Note

The conductivity meter automatically recognizes the type of the temperature probe used. As a result, you can connect electrodes with the NTC30 or Pt1000.

The temperature measurement is absolutely essential for a reproducible conductivity measurement. If the measurement is made without a temperature probe, proceed as follows:

1	Determine the current temperature using a thermometer.
2	Set up the temperature by pressing () ().

AutoRead AR
(Drift control)The AutoRead function (drift control) checks the stability of
the measurement signal. The stability has a considerable ef-
fect on the reproducibility of the measured value.

- 1 Call up the measuring mode by pressing \bigcirc .
- Activate the AutoRead function by pressing A.
 The current measured value is frozen (Hold function).
- 3 Start the AutoRead function by pressing .
 AR flashes on the display until a stable measured value is reached.

This measured value is transmitted to the printer/ interface.

- 4 If necessary, start the next AutoRead measurement by pressing .
- 5 To terminate the AutoRead function: Press the key.

Note

The current AutoRead measurement (with acceptance of the current value) can be terminated at any time by pressing ().

4.2.1 Conductivity / Specific resistance

Note

You can display measured values in the units μ S/cm (conductivity) or M Ω ·cm (specific resistance). This setting is described in Abschnitt 4.7 CONFIGURATION.

Thus, you can carry out conductivity measurements or measurements of the specific resistance:

- 1 Perform the preparatory activities according to section 4.2.
- 2 Immerse the conductivity measuring cell into the test sample.
- 3 Press the M key until 𝔅 appears in the status display. Depending on the setting, one of the following display indicators appears on the display:

Conductivity

Specific resistance

- 4 If necessary, set the temperature by pressing () (see section 4.2 on page 19).
- 5 Wait for a stable measured value.

4.2.2 Salinity

To measure the salinity, proceed as follows:

1	Perform the preparatory activities according to section 4.2.
2	Immerse the conductivity measuring cell into the test sample.
3	Press the (w) key repeatedly until <i>Sal</i> appears in the status line. The salinity value of the sample appears on the display.
4	If necessary, set the temperature by pressing () (see section 4.2, page 19).
_	

5 Wait for a stable measured value.

4.2.3 TDS (total dissolved solids)

To measure the TDS, proceed as follows:

1	Perform the preparatory activities according to section 4.2.
2	Immerse the conductivity measuring cell into the test sample.
3	 When measuring with an integrated temperature probe continue with step 4. When measuring without temperature probe: Determine the temperature of the test sample using a thermometer
	 Press the M key repeatedly until 𝔅 appears in the status line. Enter the temperature using (▲) (▼).
4	Press the () key repeatedly until <i>TDS</i> appears in the status line. The TDS value of the sample appears.
5	Set up the TDS factor (0.40 1.00) using (

6 Wait for a stable measured value.

Note

Also refer to Application Report ... 084 KONDUCTOMETRICAL DETERMINATION OF THE TOTAL DISSOLVED SOLIDS (TDS).

4.2.4 Printing/transmitting measured values

Measured values (data records) can be:

- printed on the integrated printer* or
- transmitted to the interface

Note

To print, you must switch on the printer using the Print key (Print LED lights up green)*.

To transmit to the interface, you must connect the interface cable. The integrated printer is then switched off automatically.

You can print/transmit measured values (data records) in 3 ways:

- Switch on the data transmission (Int 2) (see page 47)
 - After expiry of the selected interval, the current data record is sent to the printer/interface.
- Switch on AutoStore (Int 1) (see page 38)
 - After expiry of the selected interval, the current data record is sent to the printer/interface and in addition is stored in the data storage of the instrument
 - AutoStore (Int 1) covers the *data transmission* interval (Int 2).
- Press the key This manually prints/transmits the current measured values at any time - independently of the selected intervals.

Note

If you connect a recorder (analog output), the output to the digital interface is switched off.

* only on the Cond 730 with integrated printer

Why determine/set up the cell constant?

4.3 Determining/setting up the cell constant [C]

Due to ageing, the cell constant slightly changes. As a result, an inexact measured value is displayed. Calibration determines the current value of the cell constant and stores this value in the instrument.

Thus, you should calibrate at regular intervals.

You can determine the cell constant of the conductivity measuring cell in the range $0.450 \dots 0.500 \text{ cm}^{-1}$ or $0.800 \dots 1.200 \text{ cm}^{-1}$ by calibrating in the control standard or set it up manually in the range $0.250 \dots 2.500 \text{ cm}^{-1}$ or $0,090 \dots 0,110 \text{ cm}^{-1}$.

Additionally, you can select the fixed cell constant 0.010 cm^{-1} .

4.3.1 Determining the cell constant (calibrating)

Determine the cell constant as follows:

1 Press the key repeatedly until *LF CELL* appears on the display.

- 2 Press the key.
- 3 Press the (A) key repeatedly until the following is displayed.

Determining the cell constant (calibration in control standard)

- 4 Immerse the measuring cell into the 0.01 mol/l KCL control standard.
- 5 Press the key.
 - If no temperature probe is connected, enter the current temperature of the solution using () () and confirm with ().
 - If a temperature probe is connected, the AR measurement to determine the cell constant starts.

AR flashes until a stable signal is achieved. The determined cell constant ist displayed; the measuring instrument automatically stores the cell constant.

Note

If error message E3 appears see chapter 6 WHAT TO DO IF...

AutoRead

During calibrating, the *AutoRead* function is automatically activated. The *AR* display flashes. The calibration procedure is finished when the *AR* display stops flashing.

i	Note This method of automatically determining the cell constant by calibrating in the 0.01 mol/l KCL control standard can only be used for measuring cells with a cell constant in the range 0.450 0.500 cm ⁻¹ or 0.800 1.200 cm ⁻¹ .		
Calibration evaluation	After calibrating, the instrument automatically evaluates the current condition of the calibration. The evaluation appears on the display.		
	Display	Cell constant [cm ⁻¹]	
		0.450 0.500 cm ⁻¹	
	Z I	0.800 1.200 cm ⁻¹	
	E3	outside of the ranges 0.450 0.500 cm ⁻¹ or	
	Perform error elimination according to chapter 6 WHAT TO DO IF	0.800 1.200 cm ⁻¹	
Calibration protocol	The calibration protocol contains the calibration data of the current calibration. You can call up the calibration protocol by outputting the data storage (section 4.5.3). Note You can automatically print out a calibration protocol after the calibration. To do so, switch on the printer (Print LED lights up green) before calibrating*. After a valid calibration, the protocol is printed.		
i			
	CALIBRATION PROTOCOL 14.04.99 11:37 Device No.: 99990000 CALIBRATION CONDUCTIVITY Cal Time: 14.04.99 / 11:37 Cal Interval: 180d Cal Std.: 0.01 mol/1 KCL 40.0 °C Conduct./Tref25: 1413µS/cm Cell Const : 0.975 1/cm Probe : +++		

* only on the Cond 730 with integrated printer

Calibration interval (Int 3)

The flashing sensor symbol reminds you to calibrate regularly. After the selected calibration interval (Int 3) expires, the sensor symbol flashes. Measurements can continue.

Note

To ensure the high measuring precision of the measuring system, perform a calibration after the calibration interval expires.

Setting the calibration interval

The calibration interval (Int 3) is set to 180 days in the factory. The interval can be changed (1 ... 999 days):

1	Switch off the instrument.
2	Press M and hold down the key.
3	Press the (b) key. The <i>display test</i> appears briefly on the display. The instrument then switches automatically to the configuration level.

Press the Rev until Int 3 appears on the display. 4

- Press (\mathbf{A}) v to set the required time interval until the 5 next calibration.
- 6 Confirm with \mathbb{R} .
- 7 Change to the measuring mode by pressing (M).

4.3.2 Setting the cell constant manually

Note

1

The cell constant to be set up must either be taken from the operating manual of the measuring cell or is printed on the measuring cell.

You can set the the cell constant manually as follows:

Setting the fixed cell constant 0.010 cm⁻¹

Press the 🕰 key repeatedly until *CELL* appears on the display.

- 2 Press the even key.
- 3 Press the key repeatedly until the cell constant 0.010 cm ⁻¹ appears on the display.

4 To return to the measuring mode: Press the () key. From now on, the cell constant 0.010 cm⁻¹ will be used.

Range 0.250 2.500 cm ⁻¹	1 Press the (A) key repeatedly until <i>CELL</i> appears on the display.
	2 Press the key.
-	3 Press the repeatedly until until a cell constant in the range 0.250 2.500 cm ⁻¹ appears.
	χ μS/cm ITE/ZS ΓLF AFrg
	4 Set the cell constant to be used with $\textcircled{\bullet}$, e.g. 0.614 cm ⁻¹ .
	2 μS/cm ITEZE TLF AFrg
	5 To return to the measuring mode: Press the \bigcirc key. From now on, the new cell constant will be used.

4.4 Setting up the temperature compensation TC

The calculation of the temperature compensation is based on the preset reference temperature, Tref 20 or Tref 25 (see section 4.7 CONFIGURATION).

You can select one of the following temperature compensations:

- Non-linear temperature compensation "nLF" according to DIN 38404 or EN 27 888
- **linear temperature compensation "Lin"** with a coefficient that can be set in the range 0.001 ... 3.000 %/K
- no temperature compensation

Note

Select the following temperature compensations to work with the test samples given in the table:

Application notes	Test sample	Temperature compensation TC	Display indicator
	Natural water (ground water, surface water, drinking water)	nLF according to DIN 38404 EN 27 888	nLF
	Ultrapure water	nLF according to DIN 38404 EN 27 888	nLF
	Other aqueous solutions	Set linear temperature coefficient 0.001 3.000 %/K	Lin
	Salinity (seawater)	Automatically nLF according to IOT	Sal, ⊡F

Selecting the nonlinear temperature compensation

To select the non-linear temperature compensation proceed as follows:

1 Press the key repeatedly until *LF tc* appears on the display.

- 2 Press the key.
- 3 Press the A key repeatedly until *nLF* appears on the display.

4 To return to the measuring mode: press the \bigcirc key.

Selecting the linear temperature compensation

To select the linear temperature compensation proceed as follows:

1 Press the (A) key repeatedly until *LF tc* appears on the display.

- 2 Press the www key.
- 3 Press the (a) key repeatedly until the adjustable linear temperature coefficient appears on the display.

4 Set up the temperature coefficient, e. g. 1.880 %/K using ().

5 To return to the measuring mode: press the \bigcirc key.

Switching off the temperature compensation

To switch off the temperature compensation proceed as follows:

1 Press the key repeatedly until *LF tc* appears on the display.

- 2 Press the www key.
- 3 Press the key repeatedly until the following display appears:

- 4 The temperature compensation has been switched off.
- 5 To return to the measuring mode: press the \bigcirc key.

4.5 Storing

The conductivity meter has an internal data storage device. Up to 800 data records can be stored in it. A complete data record consists of:

- Memory location
- Date
- Time
- Measured value
- Temperature
- I.D. number

You can transmit measured values (data records) to the data storage in 2 ways:

- Manual storage
- Switching on the AutoStore function (Int 1), see page 38.

4.5.1 Manual storage

You can transmit a measured value to the data storage as follows:

Press the mathematical key.
 The current number of the next free memory location appears on the display.

	2 Confirm with (). The display changes to the input of the I.D. number.	
	x μS/cm μ I I I I I I I I I I I I I I I I I I	
	3 Enter the required I.D. number (1	999) by pressing
	4 Confirm with Im. The instrument changes to the m	easuring mode.
StoFull message	ssage This message appears if all 800 memory locations are full.	
	You have the following options:	
	Store the current measured value. The oldest measured value is over- written by this	
	Return to the measuring mode without Press any key storing	
	Output the data storage See page 40	
	Delete the data storage	See page 46

Ľ.

4.5.2 Switching on AutoStore (Int 1)

The storage interval (Int 1) determines the time interval between automatic storage processes.

After the time interval expires, the current data record is transmitted to the data storage and to the printer/interface.

The storage interval (Int 1) is set to OFF in the factory. Thus, the *AutoStore* function is switched off. To switch the function on, set up a time interval (5 s, 10 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min).

Note

If the *AutoStore* function is active, the setting of the data transmission interval (int 2) is ineffective (see page 47).

Setting the storage interval

- 1 Press and hold down the key.
- 2 Press the 🗊 key. Int 1 appears on the display.

- 3 Press the () verse to set up the required time interval between storage processes.
- 4 Confirm with . The number of free memory locations appears on the display.

- 5 As soon as all 800 memory locations are full, the AutoStore function is terminated (Int 1 = OFF). If too few storage locations are available for your measurements:
 - backup the data storage (see page 40) and
 - clear the data storage (see page 46).
- 6 Confirm with .
 The prompt for the I.D. number appears on the display.

- 7 Press To set the required I.D. number.
- 8 Confirm with .
 The instrument changes to the measuring mode and starts the measuring and storage procedure.
 AutoStore flashes on the display.

i	Note The <i>AutoStore</i> function is interrupted if you perform other functions, e.g. output data storage. After completing the other function, the <i>AutoStore</i> function continues. However, as a result, gaps can occur in the recording of the measured values.	
Switching off the	Switch off the AutoStore function by:	
AutoStore	 Setting the storage interval (Int 1) to OFF or 	
	 Switch the conductivity meter off and on again. 	
	4.5.3 Outputting the data storage	
	The contents of the data storage can be output to the:	
	• display	
	• printer/interface	
Outputting to the display	1 Press the ඬ key repeatedly until <i>Sto disp</i> appears on the display.	
	Sico d ISP RCL	

Press the key.
A measured value appears on the display.
The I. D. number of the data record appears for approx. 2 s.

3 After 2 s the respective temperature of the data record appears on the display. Stored data records are displayed together with the RCL display indicator.

You can perform the following activities:

Display further parameters of the data record (I.D. no., date, time, memory location)	Press (INTER)
Advance one data record (memory location)	Press 🛦
Go back one data record (memory location)	Press 💽

Note

If you want to find a specific parameter (e.g. date), proceed as follows:

- 1 Press the c key repeatedly until *Sto disp* appears on the display.
- Press the key.
 A measured value appears on the display.
 The I. D. number of the data record appears for approx. 2 s.

3 After 2 s the respective temperature of the data record appears on the display.

- 4 Select the parameter (e.g. date) by pressing .
- 5 Press () or () repeatedly until the required date appears on the display.
 After approx. 2 s, the temperature of the displayed measured value appears.

Outputting to the interface

1 Press the ඬ key repeatedly until *Sto SEr* appears on the display.

Press the key.
The protocol of the last calibration is transmitted to the printer/RS interface. In the meantime, *Sto CAL* appears on the display.
Following the calibration protocol, the complete contents of the storage is transmitted to the interface.

Note

You can cancel the transmission by pressing \bigcirc or $\textcircled{\basis}$.

Sample printout

CALIBRATION PROTOCOL 14.04.99 11:37Device No.: 99990000 CALIBRATION CONDUCTIVITY Cal Time: 14.04.99 / 11:37 Cal Interval: 18.04 Cal Std.: 0.01 mol/l KCL 23.0 °C Conduct./Tref25: 1413 µS/cm Cell Const : 0.975 1/cm +++ Probe: No. 1: 2.40 mS/cm 25 man 01.01.99 °C Tman nLF Tref25 C = 0.475 1/cm Ident : 1 No. 2: 10.01.99 No. 10.01.99 10:09 2.40 mS/cm 25.3 °C Tauto nLF Tref25 C = 0.475 1/cm Ident : 1 3: No. 12.01.99 12.01.99 01:48 2.40 mS/cm 21.6 °C Tauto nLF Tref25 C = 0.475 1/cmIdent : 1

The printout contains:

- Calibration protocol:
 - Date/time of the printout
 - Instrument number (Device No.)
 - Date/time of the calibration (Cal Time)
 - Calibration interval (Cal Interval)
 - Calibration standard 0.01 mol/l KCL (Cal Std.) [°C/F]
 - Conductivity of the calibration standard at 25 °C (Conduct./Tref25)
 - Cell constant (Cell Const)
 - Probe evaluation (Probe)

- Contents of the measuring storage:
 - Number of the storage location (No.)
 - Date/time of measurement
 - Measured value/unit (mS/cm) [°C/F]
 - Automatic/manual temperature measurement (Tauto/Tman)
 - Temperature compensation (nLF)
 - Tref
 - Cell constant (1/cm)
 - AutoRead function (AR)
 - I.D. number (Ident)

4.5.4 Clearing the storage

This function can erase the stored data records. 800 memory locations will then become available again.

Note

The *Clear store* function only appears if data records have already been stored in the storage. Otherwise, the conductivity meter automatically changes to the measuring mode.

In order to delete all the data records, proceed as follows:

1	Switch off the instrument.	

- 2 Press and hold down the \mathfrak{s} key.
- 3 Press the ^(b) key.
 The *display test* appears briefly on the display.

Confirm the clearing process by pressing .
 Pressing any other key stops the clearing process and the data records remain in the storage.

Note

The calibration data remain in the storage and can be called up via the calibration protocol.

4.6 Data transmission

You can use the following options to transmit data:

- One of the following options:
 - The AutoStore function (page 38) is used to periodically (Int 1 storage interval) save measured values internally and output them on the printer/ interface.
 - The data transmission interval (Int 2) function is used to periodically output measured values to the printer/ interface (see below).
- The *Output data store* function (page 40) is used to output calibration data and stored measured values to the printer/interface.
- The analog recorder output (page 49) is used to output measured values as voltages.

4.6.1 Data transmission interval (Int 2)

The interval for the data transmission (Int 2) determines the time interval between automatic data transmissions. After the time interval expires, the current data record is transmitted to the printer/interface.

Note

The setting of the interval (Int 2) only has an effect when the storage interval (*AutoStore* function) is switched off.

Setting the data transmission interval

The interval is set to OFF in the factory.

To start the data transmission, set up an interval (5 s, 10 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min):

- 1 Press and hold down the Reg key.
- 2 Press the (AR) key. Int 2 appears on the display.

- 3 Press (a) (v) to set up the required time interval between storage processes.
- 4 Confirm with .
 The instrument changes automatically to the measuring mode.

Note

If the *AutoStore* function is active, the data transmission is performed according to the setting of the storage interval (Int 1). Set the storage interval (Int 1) to OFF to activate the *data transmission* interval (Int 2).

Note

You can also set the *data transmission* interval (Int 2) in the *Configuration* menu (see page 52).

4.6.2 Recorder (analog output)

You can transmit the data to a recorder via the analog output. Connect the analog output to the recorder via the AK323 interface cable.

The data output switches automatically to recorder output.

Socket assignment

1 Free 2 Plug coding 3 Ground

4 Analog output (internal resistance < 5 Ohm)

Note

Activate the analog output by connecting 2 and 3 or use the original cable.

The signal range of the analog output depends on the measured parameter and the measuring range:

Conductivity/	Measuring range	Voltage	Resolution
resistance	0.000 1.999 µS/cm	0 1999 mV	1 mV
	0.00 19.99 µS/cm	0 1999 mV	1 mV
	0.0 199.9 µS/cm	0 1999 mV	1 mV
	0 1999 µS/cm	0 1999 mV	1 mV
	0.00 19.99 mS/cm	0 1999 mV	1 mV
	0.0 199.9 mS/cm	0 1999 mV	1 mV
	0 500 mS/cm	0 500 mV	1 mV
Salinity	Measuring range	Voltage	Resolution
	0 70.0	0 700 mV	1 mV
TDS	Measuring range	Voltage	Resolution
	0 1999 mg/l	0 1999 mV	1 mV

4.6.3 PC/external printer (RS232 interface)

You can transmit data to a PC or an external printer via the RS232 interface.

Connect the interface to the instrument via the AK340/B cable (PC) or AK325/S cable (external printer). The data output switches automatically to RS232.

Note

The RS232 interface is not galvanically isolated. If it is connected to an earthed PC/printer, measurements cannot be made in earthed media as this would give incorrect results!

Set up the following transmission data on the PC/printer:

Baud rate	Selectable between: 1200, 2400, 4800, 9600
Handshake	RTS/CTS + Xon/Xoff
PC only:	
Parity	None
Data bits	8
Stop bits	1

Socket assignment

1 CTS 2 RxD 3 Ground 4 TxD

4.6.4 Operation with MultiLab pilot

With the aid of the MultiLab pilot software, you can record and evaluate measuring data with a PC. The data is transmitted after the measuring instrument is connected to the RS232 serial interface (COM interface) of a PC.

Note

More detailed information can be found in the MultiLab pilot operating manual.

4.7 Configuration

You can adapt the conductivity meter to your individual requirements. To do this, the following parameters can be called up/changed (the status on delivery is marked in bold):

Baud rate	1200, 2400, 4800 , 9600
Data transmission inter- val (Int 2)	OFF , 5 s, 10 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min
Calibration interval (Int 3)	1 180 999 d
AutoRange ARng	yes, no
TREF 25/TREF 20	t20 or t25
Measured values given as conductivity or resi- stance values	S/cm or MΩ
Temperature unit	° C , °F
Date/time	As required

Note

You can leave the configuration menu at any time. Parameters that have already been changed are stored. To do this, press the \bigcirc key.

1	Switch off the instrument.
2	Press and hold down the \bigcirc key.
3	Press the () key. <i>The display test</i> appears briefly on the display. The instrument then switches automatically to the setting of the baud rate.

22	Set the current year by pressing ().
23	Confirm with E. The hours flash on the display
24	Set the current time by pressing $$.
25	Confirm with 🕮. The minutes flash on the display.
26	Set the current time by pressing \mathbf{O} .
27	Confirm with . The instrument changes automatically to the conductivity measuring mode.

4.8 Reset

You can reset (initialize) measuring and configuration parameters separately from one another.

MeasuringThe following measuring parameters (Cond InI) are reset toparametersthe values they had on delivery:

Measuring mode	X
Cell constant	0.475 cm ⁻¹ (calibrated) 0.475 cm ⁻¹ (set up)
Temperature compensation	nLF
Reference temperature	Tref25
Temperature coefficient of the linear temperature compensation	2.000 %/K
TDS factor	1.00

Note

When the measuring parameters are reset, the calibration data are lost. After the parameters have been reset, calibrate!

Configuration The following configuration parameters (InI) are reset to the values they had on delivery:

Baud rate	4800
Interval 1 (automatic storing)	OFF
Interval 2 (for data transmission)	OFF

5 Maintenance, cleaning, disposal

5.1 Maintenance

The maintenance tasks are restricted to the following activities:

- replacing the batteries and
- replacing the roll of printer paper*.

Note

See the relevant operating manual of the measuring cell for instructions on maintenance.

* only on the Cond 730 with integrated printer

5.1.1 Changing the batteries

1	Open the battery compartment (1) on the underside of the instrument.
2	Remove the four batteries from the battery compartment.
3	Insert four new batteries (Type Mignon AA) into the battery compartment.
4	Close the battery compartment (1). The date (day) flashes on the display.
5	Set up the date and time according to section 3.2.

Caution

Make sure that the poles of the batteries are the right way round.

The \pm signs in the battery compartment must correspond to the \pm signs on the batteries.

Only use leakproof alkaline manganese batteries.

1	Switch off the printer (Print LED lights up red).
2	Open the lid of the printer (1).
3	Remove the empty roll of paper (2).
4	Insert the new roll of paper:
	 Fold the leading edge of the paper inwards and thread it into the printer (3) from underneath. Press the real Print key (paper feed).
5	Close the lid of the printer (1).

5.1.2 Replacing the roll of printer paper *

Note

Only use original WTW rolls of printer paper. Information on this is given in the WTW catalog, LABORATORY AND FIELD INSTRUMENTATION or via the Internet.

You can also use HQ thermal paper that remains legible for at least 10 years.

* only on the Cond 730 with integrated printer

5.2 Cleaning

Occasionally wipe the outside of the measuring instrument with a damp, lint-free cloth. Disinfect the housing with isopropanol as required.

Caution

The housing is made of synthetic material (ABS). Thus, avoid contact with acetone or similar detergents that contain solvents. Remove any splashes immediately.

5.3 Disposal

Packing The measuring instrument is sent out in a protective transport packing. We recommend: Keep the packing material. It protects the

We recommend: Keep the packing material. It protects the instrument against damage during transport.

Batteries This note refers to the battery regulation that applies in the Federal Republic of Germany. We would ask end-consumers in other countries to follow their local statutory provisions.

Note

In compliance with §14 of the BATTERY REGULATION, we would like to point out that this instrument contains batteries. Batteries that have been removed must only be disposed of at the recycling facility set up for this purpose or via the retail outlet.

It is illegal to dispose of them in household refuse.

Measuring Dispose of the measuring instrument as electronic waste at an appropriate collection point. It is illegal to dispose of it in household refuse.

6 What to do if...

Error message,	Cause	Remedy
OFL	The measured value is out- side the measuring range	
	 Measuring cell not connected 	 Connect measuring cell
	 Cable broken 	 Replace electrode
Error message,	Cause	Remedy
E3	 Measuring cell contaminated 	 Clean measuring cell; if necessary, replace it
	 Unsuitable calibration solution 	 Check calibration solutions
	Cause	Remedy
LoBat	 Batteries almost depleted 	 Replace batteries (see section 5.1.1 CHANGING THE BATTERIES)
Instrument does not	Cause	Remedy
react to keystroke	 Operating state undefined or EMC electric stress unallowed 	 Processor reset: Press the AB key and switch on instrument

You would like to	Cause	Remedy
know which software version is in the instrument	 e.g. question of the WTW service department 	 Press the R key and switch on instrument. The software version is displayed.
to	Cause	Remedy
display	 Timeout of the interface 	 Check connected instrument
StoFull	Cause	Remedy
message	 All 800 memory locations are full 	 Output data storage and clear data storage

Integrated printer	Cause	Remedy
does not print	 Printer switched off 	 Switch on printer
	 No mains power supply connected 	 Connect mains power supply
	 Interface cable connected 	 Unplug cable
	 No paper available 	 Replace roll of paper
	 AutoStore function is switched on with a longer interval duration (Int 1) 	 Switch off AutoStore function
Integrated printer	Cause	Remedy
prints automatically *	 AutoStore function (Int 1) or Data transmission (Int 2) is switched on 	 Switch off functions
Print key 💮	Cause	Remedy
does not react *	 Printer is switched on 	 Switch off printer
	 Interface cable connected 	 Unplug cable
Printer operating -	Cause	Remedy
paper not being printed *	 Paper inserted with wrong side upwards 	 Turn the roll of paper around and insert it with the other side upwards

* only on the Cond 730 with integrated printer

7 Technical data

Ambient temperature	Storage tempera- ture	- 25 °C + 65 °C
	Operating temper- ature	0 °C + 55 °C
	Allowable relative humidity	Annual mean:< 75 %30 days/year:95 %Other days:85 %
Measuring ranges and resolution	∞ [µS/cm]	0.000 1.999 (only with 0.010 cm ⁻¹ cell constant) 0.00 19.99 (only with 0.010 cm ⁻¹ constant and 0.090 0.110 cm ⁻¹ cell constant) 0.0 199.9 0 1999
	∞ [mS/cm]	0.00 19.99 0.0 199.9 0 500
	Spec. resistance [MΩ*cm]	0.000 1.999 0.00 19.99 0.0 199.9 0 1999
	SAL	0.0 70.0 according to the IOT table
	TDS [mg/l]	0 1999 Factor can be set in the range 0.40 1.00
	T [°C]	- 5.0 + 105.0
	T [°F]	+ 23.0 + 221.0

Accuracy (± 1 digit)	x	No compensa Accuracy Non-linear co Accuracy ± 0.5 % according to ± 0.5 % extended nLF WTW measu	ation: ± 0.5 % ompensation Inf : Test sample temperature 0 °C 35 °C EN 27 888; 35 °C 50 °C F function according to rements
		Accuracy ± 0.5 % (the accuracy to the measu	Test sample temperature 10 °C 75 °C / percentage always refers red value!)
	SAL	Range 0.0 Accuracy ± 0.1 ± 0.2	42.0 Test sample temperature 5 °C 25 °C 25 °C 30 °C
	TDS [mg/l]	1	
	T [°C]	NTC 30: Accuracy PT 1000: Accuracy ± 0.5 ± 0.1 ± 1	± 0.1 Operating temperature 0 °C 15 °C 15 °C 35 °C 35 °C 55 °C
	T [°F]	NTC 30: Accuracy PT 1000: Accuracy ± 0.9 ± 0.2 ± 1.8	± 0.2 Operating temperature 32 °F 59 °F 59 °F 95 °F 95 °F 131 °F

Cell constant, to be set	C [cm ⁻¹]	0.010 0.090 0.110 0.250 2.500
Cell constant, calibrated	C [cm ⁻¹]	0.450 0.500 0.800 1.200
Reference tempera- ture, selectable	Tref [°C]	20 25
Temperature input	Manual [°C]	- 5 +100
Dimensions and weight	Length [mm] Width [mm] Height [mm] Weight [kg]	230 300 70 Approx 1.3
		(without plug-in power supply unit)

Analog output	Automatic switch-over when the AK 323 recorder cable is connected.		
	Signal range	0 1,999 V for the range 0 1999 digits	
	Accuracy	± 0,5 % of diplayed value ± 0,1 (% saturation) or ± 0,5 %of displayed value ± 0.01 mg/l	
	Internal resistance	< 5 ohms (current limitation to max. 0.2 mA output current)	
Serial interface	Automatic swit cable is conne	ch-over when the AK 340/B or AK 325/S cted.	
	Туре	RS 232, data output	
	Baud rate	can be set to 1200, 2400, 4800, 9600 Baud	
	Data bits	8	
	Stop bit	1	
	Parity	none	
	Handshake	RTS/CTS+Xon/Xoff	
	Cable length	max. 15m	

Energy supply	Batteries	4 x 1.5 V AA type alkaline manganese batter- ies
	Runtime	Approx. 3000 operating hours
	Power supply	Plug-in power supply (Connection max. overvoltage category II)
		Plug-in power supply unit (Euro, US, UK, Australian plug) FRIWO FW7555M/09, 15.1432 Friwo Part. No. 1822089 Input: 100 240 V ~ / 50 60 Hz / 400 mA Output: 9 V = / 1,5 A
Guidelines and norms used	EMC	E.C. guideline 89/336/EEC EN 61326-1:1997 EN 61000-3-2 A14:2000 EN 61000-3-3:1995 FCC Class A
	Instrument safety	E.C. guideline 73/23/EEC
	Protective class	3, EN 61010-1 A2:1995
	Climatic class	2, VDI/VDE 3540

Test marks UL/CUL, CE

FCC Class A Equipment Statement

<u>Note:</u> This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
8 Lists

This chapter provides additional information and orientation aids.

Abbreviations	The list of abbreviations explains abbreviations that appear
	on the display or when dealing with the instrument.

- **Specialist terms** The glossary briefly explains the meaning of the specialist terms. However, terms that should already be familiar to the target group are not described here.
 - **Index** The index helps you find the topics that you are looking for.

Abbreviations

X	Conductivity value
ABS	Plastic housing
AR	AutoRead (drift control)
ARng	Automatic range switching Measuring instrument measures with high- est resolution
AutoStore	Automatic storing
Baud	Baud rate
С	Cell constant cm ⁻¹
Cal	Calibration
CELL	Cell constant
disp	Display Output of the data storage on the display
E3	Error message (see chapter 6 WHAT TO DO IF)
Ident	I. D. number
Inl	Initialization Resets individual basic functions to the status they had on delivery
Int	Interval
Lin	Linear temperature compensation
LoBat	Low Battery Batteries are almost empty
nLF	Non-linear temperature compensation
OFL	Overflow Display range exceeded
Sal	Salinity
SELV	Safety Extra Low Voltage
Sto Clr	Clear storage

Sto disp	Output of the data storage on the display
Sto Full	Memory full
Sto SEr	Output of the data storage to the printer/ interface
Tauto	Automatic temperature measurement
ТС	Temperature coefficient
TDS	Total dissolved solids
TP	Temperature Probe Temperature measurement active
Tref 20/T20	Reference temperature 20 °C
Tref 25/T25	Reference temperature 25 °C
°C	Temperature unit °Celsius
°F	Temperature unit Fahrenheit

Glossary

- AutoRead Monitors the electrode drift and releases the measured value only after the stability criterion has been reached. In this way, this procedure ensures the highest degree of precision and reproducibility.
- **Calibration** The cell constant is determined through calibration. To do so, the conductivity measuring cell is immersed into a series of aqueous salt solutions with exactly known electric conductivity. The relevant conductivity values are determined using the conductivity measuring instrument.
- **Cell constant** Linear factor describing the geometrical dimensions of a measuring cell and its electrodes.
 - With the value of the cell constant you can roughly describe the application range of a conductivity measuring cell.
 - The cell constant is determined through calibration in one or several calibration solutions.
- **Conductivity** The conductivity value is a sum parameter for the ion concentration of a test sample.
- Control standard
solutionSolution with a known conductivity to determine or check the
conductivity.
 - **Drift control** See AUTOREAD.
 - **Reference** In order to compare values measured at different temperatures, the values have to be converted to a fixed temperature. This temperature is 25 °C, or, as an exception, 20 °C.

Resistance	All substances (solids, liquids, or gases) with mobile charge carriers like for example electrons or ions have a finite ohmic resistance, which means they have an electric conductance that can be measured or an electric conducitivtiy.
Salinity	The salinity is a sum parameter especially for seawater; it gives the salt content of seawater.
Temperature compensation (TC)	The temperature has a very strong impact on the electrical conductivity. To be able to compare measured values, it is necessary to temper or convert the test sample to a reference temperature.
Test sample	The sample to be measured. It can be liquid or solid.
Total dissolved solids (TDS)	Mass that remains of the substances dissolved in an aque- ous solution after a fixed filtering and drying procedure, as far as these substances are not volatile under the conditions of this procedure. The total dissolved solids refer to the vol- ume of the filtered aqueous sample used und are given in mg/l.

Index

Α

analog output4	19
authorized use1	0
AutoRange5	54
AutoRead2	20
AutoStore	38

B

batteries	
replacing	. 59
battery compartment	. 60
baud rate, setting	. 53

С

D

data record	36
data transmission (interval)	48
date, setting	13, 55
display	7
drift control	20

Ε

energy saving feature	17
error messages	63

I

initial commissioning13

initialize	57
interval	
calibration (Int 3) 2	28
data transmission (Int 2) 4	7
storing (Int 1) 3	8

Κ

keys													6
~													

L

linear temperature compensation	34
LoBat	63

Μ

manual storing	36
measuring	19
measuring precision	28
MultiLab pilot	51

Ν

non-linear tempera	ture	
compensation		33

0

operation							17
operational safety							10
output data storage							40

Ρ

paper roll	
replacing	59
place of the instrument	17
plug-in power supply	
connecting	14
printing	
calibration protocol	27
measured values	24
printing measured values	24

R

recorder output	49
reference temperature	54, 58
reset	57
RS232 interface	50

S

safety
safety precautions9
salinity
salinity measurement
scope of delivery13
sockets7
Specific resistance
storing
switching on

Т

TDS23, 49
technical data67
temperature compensation32
linear
non-linear
setting
switch off35
temperature probe
temperature unit
time, setting
total dissolved solids
measurement23
transmit data47